
0

CJSIMPLIFIED LINEAR-TIME JORDAN SORTING

AND POLYGON CLIPPING

IKhun Yee Fung

Tina M. Nicholl

Robert E. Tarjan
C11ristophcr J. Van Wyk

CS-TR-189-88

July 1988

NOV 2 91989

89 !I20 0&

Simplified Linear-Time Jordan Sorting and Polygon Clipping

Khun Yee Fung

Tina M. Ncholl
/

V

Robert E. Tarjan 2,3

Christopher J. Van "vk 2

July, 1988

ABSTRACT

The Jordan sorting problem is, given the intersection points of a Jordan

curve with the x-axis in the order in which they occur along the curve, to sort

them into the order in which they occur along the x-axis. This problem arises

in clipping a simple polygon against a rectangle (a -window") and m etficient

algorithms for triangulating a simple polygon. Hoffma,, Mehihorn, Rosen-

stiehl, and Tarjan proposed an algorithm that solves the Jordan sorting problem

in time linear in the number of intersection points, but their algorithm requires

the use of a sophisticated data structure, the level-linked search tree. We pro-

pose a variant of the algorithm of Hoffman et al. that retains the linear time

bound but simplifies both the ooerations required on the key data structure and

the data structure itself.

Deparimen of (CwmputeT Science. The Univerity of Western Ontano, London, Ontano, Canada N ,,AR7 Research

p~rtally supF.wte. by NSERC Caadi
AI&1 1Sell 1 Anor,'co-es, 600 M- untain \~venue, Murray 1ILl, NJ 0(rQ4
Dejanment of C(mpuutr Science, PnoionC Univerity. Prnceton, NJ 08544 ReseArcd pemall. supported t7 the

Nauonal Snnce Founoa um. Grant I)CR-905
t

,2. and the ,Office t Naval Research Contract N(A)0l4.g7 K (6'

-2-

1. Polygon Clipping via Jordan Sorting

Let P be a simple n-vertex planar polygon and let W be a rectangular window in the

plane. The problem of clipping P against W is to compute the polygon or set of polygons S

that bound the intersection of the interior of P with the interior of W. The polygon clipping

problem is fundamental in computational geometry and in computer graphics; it arises, for

example, in window management and in hidden surface removal [12]. In the latter application,

the problem is actually more general, in that both P and W can be polygons with holes, but our

results on the basic problem extend to the more general problem. In our discussion, we

assume that every intersection point of P and W is a crossing point, i.e., a point where P

crosses from the inside to the outside of W. Our approach extends easily to handle portions of

P that are tangent to W in points or line segrments.

The process of polygon clipping divides naturally into two steps:

(1) Find the points of intersection of P and W.

(2) Find the polygonal curves into which the points of inteiseton divide P and TV, and

group these curves to torm the set S of output polygons.

Step I involves primarily geormetric computation. It can be carried out in 0(n) time by

proceeding from vertex to vertex along P and cI :ermining, for each line segment of P, whether

and where it crosses W. An asymptotic running-time bound of 0(n) follows immediately from

the fact that there are 0(n) intersection points. Minimizing the constant factor in the running

time involves interesting issues; see. e.g., [7]. This method of performing Step I produces the

intersection points in the order in which they occur along P, and as a side effect determines the

polygonal curves into which the intcrsection points divide P.

Step 2, on the other hand, involves primarily topological computation. The hard part of

the computation is to sort the intersection points ito the order in which they occur aloni, W.

Once this is done, producing the set of output polygons is straightforward [12].

Much work on polygon clipping has concentrated on Step I at the expense of Step 2.

Sutherland and Hodgman [91 dealt with the sorting problem correctly (in an appendix), but pro-

posed a grouping method that is based on the computation of shortest paths and that need not

produce the correct output polygons. Liang and Barsky [5] ignored the need for Step 2

entirely. Weiler and Atherton [12, described a correct grouping method but did not explicitly

discuss the sorting problem.

If a general sorting algorithn is us,. j L,:, sort Jhc r ~ccction poin.s, the time for Step 2.

and hence for the entire polygor, clipping problem, is 0(n log n). From an algorithmic point of

view, the interesting aspect of polygon clipping is 'hat a general sorting algorithm is net

required. Indeed, Step 2 can be performed in 0(n) time, and hence so can polygon clipping.

-3-

Let us abstract the sorting problem slightly to make it easier to study. Consider a Jordan

curve C in the plane that crosses the x-axis everywhere it touches it. (A closed Jordan curve is

a homeomorphic image of a circle. An open Jordan curve is a homeomorphic image of a line

segment. Most topologists use the term "Jordan curve" to mean a closed Jordan curve. We

extend the term, however, to mean either an open or a closed Jordan curve; the key property of

Jordan curves is that they do not have self-crossings. To be concrete, one can think of C as a

simple polygonal curve.) Let z 1, z2 z, be the sequence of intersecion points of C with

the x-axis in the order in which they occur along C. The Jordan sorting prob!cm is to sort the

given sequence z z 2 z, by x-coordinate.

An algorithm for Jordan sorting can be applied directly to the sorting part of Step 2 of

polygon clipping Jordan sorting is also needed in efficient algorithms for triangulating a sim-

ple polygon [1,11]. Hoffman, Mehlhorn, Rosenstiehl, and Tajan [4] devised an 0(n)-time Jor-

dan sorting algorithm. The heart of their method is a sophisticated data structuxe, the level-

linked search tree.

Our purpose in this paper is to improve the algorithm of Hoffman et al. by simplifying it

while preserving the 0(n) time bound. First, we simplify the kinds of operations needed on

the key data structure. We show that Jordan sorting can be reduced to performing an inter-

mixed sequence of two kinds of operations on a collection of sorted lists:

(i) insert an item at the front or the back of a given list;

(ii) find an item m a given list and split th. list just before or just after this item.

The algorithm of Hoffman et al. requires a third list operation in which a middle section

of a list is split out and the two end sections are concatenated. Since our algorithm does not

require this third list operation, we obtain a second simplification: the use of heterogeneous

finger trees to represent the lists, in place of level-linked trees (which implement homogeneous

finger trees).

The remainder of the paper consists of three sections. In Section 2, we reduce the Jordan

sorting problem to the list manipulation problem discussed above. In Section 3 we show that

the list manipulation problem can be solved in 0(n) time using heterogeneous finger trees or

any equivalently efficient data structure. Section 4 contains some concluding remarks.

2. Jordan Sorting via List Manipulation

Let us review the approach of Hoffman et al. [4] to the Jordan sorting problem. (See also

[I].) For notationai cuncision, we interpret the expression "z, < zj'" to mean that the abscissa

of z, is less than the abscissa of z,; that is, we consider dic pun r" to be ordered by their x-

coordinates. We write <zi-,,z,> to denote the part of C that goes from z,_i to z, without

-4-

crossing the x-axis; thus, if i a j mod 2, <zi- ,zi> and <zj-. ,zj> lie on the same side of the x-

axis. We also write <zi, zj> to deiote U.k S< <Zk,Zk+1>.

The sequence z 1, z2. z gives rise to two forests, as follows. Assume that <z 1,z 2>

lies above the x-axis. (If riot, reflect C about the r-axis.) For I < i 5 n let 1i = min {z- ,z.}

and ri = max {zjj,zj}. We say that a pair {zj-&,zj} encloses a point z if li < z < ri . We say

that a pair {z- 1 ,z1} encloses a pair {Zj-l,zj} if i M j mod 2 and {zi- ,zL} encloses both zi-I

and zj; thus, <zj-1 ,.zj> lies between <z1 -l,zj> and the x-axis. For any two pairs {z,,zi} and

{zl ,zj} such that i = j mod 2, the simplicity of C implies that each pair encloses an even

number of points (zero or two) of the other. The Hasse diagram of the "encloses" relation on

the set of pairs {{z 2j.j ,z 2j} 1 1_! i -< 1Ln!2j} is a forest, called the upper for • Similarly, the

Hasse diagram of the "encloses" relation on the set of pairs {{z -,z 2 ,1+} I

1 5 i < .(n-l)/2J} is called the lower forest. In both of these forests, we order each set of

siblings by placing {zj_ ,z14 before {z.-, ,zj if ri < 1j; this makes each forest into an ordered

forest. By adding a dummy pair {-,oo} to each forest, we create two ordered trees, called the

upper tree and the lower tree. (See Figure 1.)

A family is a set of pairs consisting of a pair and all of its children (in the appropriate

tree). Suppose that the set of finite pairs in the family is {z,_,zj, , {zi,.l,zi},

i, .z, }. If the family does not include the pair {--o,eo}, then it corresponds to a simple

closed curve formed from <z',-i,z',>, <ZiaZi 2 > <zi_,z4> along with appropriate parts

of the x-axis interconnecting them; the region inside this curve is the family region. If the fam-

ily includes the pair {---o,o}, then it corresponds to a simple open curve formed from

<z,_. ,zI,>, <z'_ z2> <zj,_.,z,,> along with parts of the x-axis interconnecting them and

two rays that go from the leftmost curve to --w and from the rightmost curve to =; the con-

nected region bounded by this curve that contains no other parts of the x-axis is the family

region. The family region for a family in the upper tree lies above the x-axis, while the family

region for a family in the lower tree lies below the x-axis. (See Figure 2.)

The Jordan sorting algorithm proceeds incrementally, processing the points zI, z 2.

z. one at a time and building the upper tree, the lower tree, and a list of the points in sorted

order. Processing the point zi involves inserting z, into the appropriate position in the sorted

list and, if i > 1, adding {zi-.,z 6 } to the appropriate tree (the upper tree if i is even, the lower

tree if i is odd.)

Before examining the details of this algorithm, we make :i new observation about the

family regions that simplifies the required processing. Suppose that z 1 , z2, . . . , z, have been

processed so far, i.e., the upper and lower trees have been constructed representing the part of

curve C . z to zi . Let F be the family so far constructed containing the pair {zj_ ,z} as a

-5-

child, and let R be the corresponding family region; observe that no part of <z . z,> can

lie in the interior of R. Let zj * zi-I be the point among the points in pairs of F such that z,

and zj are adjacent, i.e., no point in a pair of F lies between z, and z,. Consider the point -k

where C first enters R after passing through zi (if C ever enters R). Then either

(a) zk lies between zi and zj; or

(b) the parent pair in F is {--o,oo} and z, and zk bracket all finite points in pairs of F other

than zi.

(See Figure 3.)

We prove this locality lemma by contradiction. Suppose it were not true. Then there

would be two finite points in pairs of F, say z. and Zq, such that zp but not zq lies between zi

and Zk. (See Figure 4.) Since R is a path-connected region, there is a simple curve S lying

entirely inside R connecting zi and Zk. Curve S, together with <zi zk>, f0rms a simple

closed curve 0 with zp on its inside and Zq on its outside. The part of <z 1 zk> that con-

nects zp and zq must intersect 0. Since R is a family region, this intersection cannot occur on

S, so it must occur on <zi . Zk>; but this violates the simplicity of C. This contradiction

establishes the lemma.

The locality lemma allows us to represent each family by one or two lists, called sibling

lists. Consider a family F whose most recently added pair is {zi_1 ,zi}. If {zi- 1 ,zi} is the

parent pair of F, then F is represented by one sibling list containing all the pairs in F except

{zi- 1 ,zi}. If {zi- 1 ,zi} is not the parent pair of F, then F is represented by two sibling lists, one

containing all pairs in F both of whose points are less than or equal to z, and the other contain-

ing all pairs in F both of whose points are greater than or equal to z, (one of these lists may be

empty). Sibling lists never include parent pairs; each finite pair occurs in two families (once as

a parent and once as a child) but in only one sibling list.

Now we are ready to describe the details of the Jordan sorting algorithm. Initialization

consists of creating a sorted list containing -- , z I, z 2, z 3 , and oo in sorted order, and creating

two singleton sibling lists containing {zl,z 2 } and {z 2,z 3}. The main part of the algorithm

consists of repeating the following steps for i from 4 to n:

Step 1. Let v be the point in the sorted list preceding zi- 1. If i is odd and v = z 1 , replace v by

its predecessor in the sorted list. (Point z, is in no pair in the lower family.) Let {zj-,,zj} be

the pair containing v such that i -j mod 2. [Thus, <zj_ ,zj> and <zi-i,zi> lie on the same

side of the x-axis.] (If v = -- c, let {zj- ,zj} be {--o,oo}.)

Step 2. Let w be the point in the sorted list following zi- 1 . If i is odd and w = z 1, replace w

by its successor in the sorted list. Let {Z_ 1 ,Zk} be the pair containing w such that

i a k mod 2. [Thus, <zk-1,Zk> and <zi-,zi> lie on the same side of the x-axis.] (If w = oo,

-6-

let {k-1,z1 be {--*,-o}.)

Step 3. Assume that zi-I < zi; the other case is symmetric.

(a) [Insert {zi- ,zi] into its proper place with respect to its siblings to the left.] If fzjl,zjl

encloses zi-1, create a new singleton sibling list containing {zi_ ,zi}; otherwise, insert

{zi- 1,zi} after {zj_,,zj} in the siblt:._ fist containing {zj_i,zJ}. (The locality lemma

implies that {zj- ,zj} is last on this lisi.)

(b) [Split off any children of {zi- 1,zi}.] If {zk-z,zk} does not enclose zi-1, split the sibling

list containing {zk-1,zk} into two lists, one containing all pairs whose points are less than

z,, the other containing all pairs whose points are greater than zi. (The locality lemma

implie- that {Zk-1 ,Zk} is first on its sibling list before the list is split.) One or the other

of the split lists may be empty.

(c) [Insert zi into its proper place in the sorted list.] If {zi- 1 ,zi} has no children, insert zi

immediately after z,-- 1 in the sorted list. Otherwise, let {z,,, -,z,,} be the rightmost child

of {zi- ,zi}; insert zi immediately after r,, in the sorted list.

(See Figure 5.)

The correctness of this algorithm follows from the locality lemma and other properties of

Jordan curves. Let us make a few comments about the data structures needed to implement the

algorithm. We assume the input is given in the form of a doubly linked list, with next(z) and

prev(z) being the successor and predecessor of intersection point z along C, respectively. The

output is also represented by a doubly linked list, with afrer(z) and before(z) being the succes-

sor and predecessor of intersection point z along the x-axis. In addition, a bit even(zi) indicates

for each intersection point zi whether i is even or not. With this representation, it is not neces-

sary to construct the pairs explicitly. A pair {zi- 1 ,zi} can be represented just by zi- 1, since

zi = next(zi- 1) is computable in constant time. Each of the sibling lists is then just a list of

intersection points, rather than a list of pairs of points.

The total space requirements of the algorithm are four pointers and one bit per point, plus

whatever space is necessary to represent the sibling lists. The running time ot the algorithm is

0(n) plus the time needed to perform 0(n) insertion and split operations on sibling lists. In

the next section we discuss a data structure for representing the sibling lists that requires 0(n)

time and space for the list operations.

The Jordan sorting algorithm can be extended easily to two related problems: the recogni-

tion problem, i.e., testing whether a given sequence can arise as the sequence of intersection

points of a Jordan curve with the x-axis (see [4]), and the problem of Jordan sorting with

error-correction required by the efficient triangulation algorithm of Tarjan and Van Wyk [11].

Neither cxtension affects the 0(n) time bound.

-7-

3. Insertion and Splitting Operations on Sorted Lists

We have reduced the Jordan sorting problem to a pure problem in data structures, which

we can formulate as follows. Maintain a collection of sorted lists whose items are selected

from a totally ordered universe U, subject to the following three kinds of operations:

(i) make-lisi(x): Create a new singleton list containing x.

(ii) insert(x,y): If x < y, insert x at the front of the list containing y; in this case, y must

initially be at the front of its list. If x > y, insert x at the back of the list containing y;

in this case, y must initially be at the back of its list.

(iii) split(x,L): Split list L into two lists, one containing all items less than or equal to x

and the other containing all items greater than x.

A sequence of m intermixed operations is to be performed on an initially empty collection

of lists. We seek a list representation such that the total time for m operations is 0(m).

A suitable list representation is the heterogeneous finger tree. This is a balanced search

tree in which the pointers along the two ribs of the tree (the paths from the root to the first and

last nodes in symmetric order) go up instead of down. We omit a detailed description of the

data structure, since it can be found elsewhere [11]. Heterogeneous finger trees support the

desired list operations in the following amortized time bounds: 0(1) for make-list and insert,

and 0(log(min {l-k,k} + 2)) for split, where 1 is the size of the input list and k and I-k are

the sizes of the two output lists. By "amortized" time bounds we mean that for any sequence

of operations, the sum of the amortized time bounds is an upper bound on the sum of the

actual times. See Tarjan's survey paper [101 for a thorough discussion of amortization.

The amortized time bound for split is too large to conclude unmediately that the total

time for a sequence of m operations starting with no lists is 0(m). By using an extra amortiza-

tion argument, however, we can reduce the amortized time of split to 0(1). The reasoning is

the same as that used by Goldberg and Tarjan [3] to charge splitting time to concatenations.

(In our case this time is charged to insertions.)

We use the idea of a potential function [101. We define the potential of a list of size I to

be c (I - log 1), where c is the constant in the amortized time bound for splitting, and the base

of the logarithm is two. We define the total potential of a collection of lists to be the sum of

their potentials, and the nominal time of a list operation to be its amortized time bound plus

the net increase in potential it causes. For any sequence of list operations, the sum of the non-

inal times equals the sum of the amortized time bounds plus the final total potential minus the

initial total potential. The initial total potential is zero (there are no lists initially) and the final

total potential is nonnegative. Thus the total time required to perform any sequence of m lis!

operations is at most the sum of the nominal time bounds.

-8-

The nominal time to initialize a list is 0(1). The nominal time for an insertion is also

0(1), because its amortized time is 0 (1) and the increase in potential when the list grows from

length I to 1 +1 is

c(l +1 - log (1 +1) - I + log l)

= c(1 + log-I 1)
1+1

_< c = 0(1).

Finally, the nominal time for a split is 0(1); when sublists of sizes k > I and 1-k >- I are

formed by a split, the amortized time is c(log (min {k,l-k} + 2)), and the potential increase is

c(k - logk + (1-k) - log (1-k) - I + log!)

= c(- logk - log (1-k) + log!)

I
= c(- logmin {k,l-kl + log 1

max {k,l-k}

< c(-logmin {k,1-k} + 1),

since 1 < 2max {k,l-k}. Therefore the sum of the amortized time and the potential increase is

at most 3c = 0 (1). Since the nominal time for each kind of list operation is 0(1), the total

time for m list operations is 0(m), as desired.

4. Remarks

There are two obvious ways to apply the Jordan sorting algorithm to clip a polygon

against a convex window. Sutherland and Hodgman [91 suggest that the polygon be clipped

sequentially against each line that contains a side of the window; the set of polygons resulting

from clipping against each side becomes the input for clipping against the next side. It may,

however, be more efficient to clip the polygon against the entire window at once. To do this,

we need only be able to compare two intersection points with respect to their order around the

window boundary. If we choose a point on the window boundary as the origin, a point on the

interior as the center, and a direction in which the order increases (say clockwise), then we can

perform each comparison in 0(1) time by computing the angles of the rays joining the center

to the points to be compared.

Throughout this paper, and particularly in the preceding paragraph, we have ignored the

time required to find the points of intersection between the n-sided polygon P and the window

W. If W has a fixed number of sides, then all of the intersection points can be found in 0 (n)

-9-

time, by a generalization of the method described in Section 1. If W is convex and has k sides,

then we can traverse P to find the intersection points, using a binary search algorithm on the

sides of W to discover whether each vertex lies inside or outside the polygon and where each

edge of P intersects ,Y; the total time for this method is 0 (n log k). If W is not convex, then

the number of intersections I between P and W is 0 (nk); the algorithm of Chazelle and

Edelsbrunner [1] can be used to find all I intersections in 0 (1 + (n +k)log (n +k)) time, and in

fact produces enough information to perform Step 2 directly.

To summarize, when the clipping window W has a fixed number of sides, Step I can he

performed in 0 (n) time, so the complexity of Step 2 de'ermines the complexity of any

polygon clipping algorithm. When W has a variable number of sides or is not convex, how-

ever, the dominance of Step 2 in the complexity of a polygon clipping algorithm is no longer

so obvious.

As noted in the paper by Hoffman et al. [41, the use of the splay tree [8], a self-adjusting

form of search tree, gives a very simple algorithm for Jordan sorting that may run in linear

time. This method may well be prefe rable in practice to the algorithm we have presented, even

though the linear time bound for the method based on splay trees remains only a conjecture.

5. References

[I] B. Chazelle and H. Edelsbrunner, "An optimal algorithm for intersecting line segments

in the plane," Princeton University Department of Computer Science Technical Report

No. 148, 1988.

(21 K. L. Clarkson, R. E. Tarjai, and C. J. Van Wyk, "A fast Las Vegas algorithm for tri-

angulating a simple polygon," Discrete and Computational Geometry, submitted.

[3] A. V. Goldberg and R. E. Tarjan, "Finding minimum-cost circulations by successive

approximation," Math of Oper. Res., to appear.

[4] K. Hoffman, K. Mehihom, P. Rosenstiehl, and R. E. Tarjan, "Sorting Jordan sequences

using level-linked search trees," Inform. and Control 68 (1986), 170-184.

[5] Y. D. Liang and B. A. Barsky, "An analysis and al,arithm for polygon clipping,"

Comm. ACM 26 (1983), 868-877.

[6] K. Mehhomn, Data Structures and Algorithms 1: Sorting and Searching, Springer-

Verlag, Berlin, 1984.

17] T. M. Nicholl, D. T. Lee, and R. A. Nicholl, "An efficient new algorithm for 2-D line

clipping: its development and analysis," Proc. of SIGGRAPH '87, Computer Graphics

21, 4 (1987), 253-262.

- 10-

[8] D. D. Sleator and R. E. ','arjan, "Self-adjusting binary search trees," J. Assoc. Comput.

Mach. 32 (1985), 652-686.

[9] I. E. Sutherland and G. W. Hodgman, "Reentrant polygon clipping," Comm. ACM 17

(1974), 32-42.

[10] R. E. Tarian, "Amortized computational complexity," SIAM J. Algebraic and Discrete

Methods 6 (1985), 306-318.

[11] R. E. Tarjan and C. J. Van Wyk, "An O(n loglogn)-time algorithm for triangulating a

simple polygon," SIAM J. Comput. 17 (1988), 143-178. Erratum: SIAM J. Comput. 17

(1988), 1061.

[121 K. Weiler and P. Atherton, "Hidden surface removal using polygon area sorting," SIG-

Gtk4PH '77 Proc., Computer Graphics 11,2 (1977), 214-222.

Figure Captions

Figure 1. A Jordan curve an. its upper and lower family trees. In this and the following three figures,
the intersection z, of the curve with the x-axis is labelled i.

Figure 2. The family region corresponding to {z 4 ,z} and its children in the lower family tree of the
curve in Figure 1.

Figure 3. The locality lemma determines where C can re-enter region R after it leaves at z,. At -ie top,
region R is finite, and C must re-enter it betvween zi and z1 . At the bottom, region R is infinite, and C
may re-enter it to the right of z, or to the left of ai finite points.

Figure 4. In this illustration of the proof of the locality lemma, the boundary of region 0 is dashed.
The portior., of the boundary outsidt; R is <zj,z,j> <zk_1,zk>.

Figure 5. Illustration of Step 3 of the algorithm. In (i) and (ii), substep (a) creates the singleton sublist
{z,-1,z,}; in (iii) and (iv), substep (a) adds {z,_1 ,z,} after {z1.1 ,z,}. In (i), (bi), and (iv), substep (1)
splits off zero or more children of {z,- 1,z,}.

/ N /11

/

_ / /9 2i3 ~Q i~*
//

-9

N'

-9

0

4+3

2

~ jq ~
r

/
/

/

4
R

N' -

V '.'3u~E

4 1 1 7 65

FIGURE 2

/ -i I

FIGURE 3

'Il

I //p

FIGURE 4

f1 Z1 -1 z11 tk 'JZj... 4k rm

r, ZI-1 Zi rk r Ii r

(iii) (iv)

FIGURE 5

